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Abstract 
Modulated differential scanning calorimetry (MDSC) uses an abbreviated Fourier transfor- 

mation for the data analysis and separation of the reversing component of the heat flow and tem- 
perature signals. In this paper a simple spread-sheet analysis will be presented that can be used 
to better understand and explore the effects observed in MDSC and their link to actual changes 
in the instrument and sample. The analysis assumes that instrument lags and other kinetic effects 
are either avoided or corrected for. 

Keywords: calorimetry, Fourier series, heat capacity, heat flow calorimeter, MDSC, spread- 
sheet analysis, temperature modulated calorimetry 

Introduction 

Modulated differential scanning calorimetry, MDSC, [1] is based on tempera- 
ture modulation and has recently also been called TMDSC [2]. The treatment in 
this paper uses the formalism developed for heat-flux calorimetry, as can be carried 
out with the TA Instruments MDSC 2920. In prior publications from our labora- 
tory we have given a general mathematical description of MDSC [3], discussed a 
method of quasi-isothermal MDSC for heat capacity measurement with the neces- 
sary calibration instructions and limits for producing high-quality data [4], ad- 
dressed the questions of linearity, steady state, and complex heat capacity [5], and 
explored the time dependence of the heat capacity as experienced in the glass tran- 
sition region [6-8]. A general, computer-generated lecture course on MDSC was 
produced, and is available through the World Wide Web [9]. 

In this paper a simple method is developed to explore the link between the re- 
corded heat capacity or heat flow as given by the software of the MDSC and the as- 
sumed and modelled changes within the calorimeter and sample. A simple spread 
sheet, as is available in any personal computer, is used for the computation and 
plotting. The basic program is set up in Lotus 1-2-3 TM (Release 4 for Win- 
dowsT~"), but any other spread sheets should work as well. The actual worked-out 
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208 WUNDERLICH: MODULATED DSC 

spread sheet can be downloaded from our WWW home page [9] and easily modi- 
fied to any specific application, Note that this analysis assumes that the calorimetric 
signal contains only negligible instrument lag, i.e. the always present lag is within 
the limits explored earlier [5], or it is corrected for. In either case, this analysis is 
then suitable to directly convert a modelled kinetics of a chemical or physical proc- 
ess to the expected output from an MDSC measurement for comparison of model 
and experiment. Detailed models for the kinetics of the glass transition that can be 
fed directly into the here presented spread-sheet are presently tested and will be 
published in due time [7, 8]. With minor modification it is also possible to use the 
present spread-sheet to convert the result of a kinetics model to the expected signal 
of a Met-tier ADSC or a Perkin-Elmer DDSC (again under the condition that instru- 
ment effects have been eliminated). Naturally it is also possible to judge the quality 
of the various modulation equipment by a comparison of the modelled output of a 
process used for calibration with the actual calorimeter output. As can be seen from 
the displayed figures, reversible, total, and irreversible signals are computed. 

Modulated calorimetry 

In MDSC a simple, sinusoidal modulation changes the increasing block tem- 
perature Tb(t) to: 

Tb(t) = T O + <q>t + A.r~ sin(c0t) (1) 

where <q> is the underlying heating rate, obtained by forming a running average 
over two complete modulation periods; and co, the modulation frequency 2n/p, with 
p representing the period of one cycle in seconds. The amplitude Arb at the heater 
block is adjusted such that a preset amplitude A is observed at the sample position. 
For this reason, one needs only to discuss the response to this modulation in the 
temperature difference between reference and sample thermocouple AT=Tr-T s. 
The heat flow HF given in J s -1 or watts is proportional to this temperature differ- 
ence, given in kelvins. Typical temperature modulations may have a maximum am- 
plitude A between 0.1 and 2 K and a period between 10 and 100 s. The condition 
for quantitative measurement is a negligible temperature gradient within the sample 
and continuous steady state [5, 6, 10]. Limits to the actual run parameters were es- 
tablished earlier [4]. 

The approach to steady state of the change in temperature as a function of time 
canbe  judged, for example, at the sample position of the calorimeter, Ts(t ), and is 
given by [4]: 

Cs e-Kt/Cs) Ts(/)- T O - <q>t = -<q>-g(1 - + 

+A[cose sin cot - sine coscot + sine e -Kt/Cs] 
(2) 

where T o, is the temperature at the start of the experiment; C v the heat capacity of 
the sample calorimeter (consisting of sample and pan); K, the Newton's law con- 
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stant governing the heat flow; and e is the phase shift relative to the modulation fre- 
quency co at the block and is given by: 

sine = co (3) 

The trigonometric addition theorem cose sincot-sine c o s c o t = s i n ( c o t - e )  can be used 
to condense Eq. (2), and the equation sin2E+cos2e=l permits evaluation of cose 
from Eq. (3). Steady state is reached as soon as all terms with the factor e -Kt/r be- 
come negligible: 

C$ 
Ts(t) - T O - <q>t = - < q > ~ -  + A sin(cot- e) (4) 

Analogous equations hold for the reference temperature (phase shift qo) and the tem- 
perature difference, AT (phase shift 5) [3]. Evaluation of q C s / K  without the modu- 
lation influence leads to the standard DSC result and is duplicated, as shown below, 
by the 'total heat flow' (<HF(0>). Determination of the calibration constants, meas- 
urement of A^ or Ar~, and setting of the modulation amplitude A of T s and the 
modulation frequency co allow, then, to determine the heat capacity in a second 
mode from the modulation alone (determination of the 'reversing' heat capacity): 

mop = A~ f l ( ~ - ~  + C '2 - - AH~F K '  (5) 
A A 

where m is the sample mass; c 0, the specific heat capacity of the sample; and C', 
the heat capacity of the empty reference pan of identical mass to the empty sample 
pan. The calibration constant K is independent of modulation frequency and refer- 
ence heat capacity. The commonly measured calibration constant K'  changes for 
runs with different co and C'. 

Modeling of the software deconvolution of the measurement 

The deconvolution of the heat flow signal in MDSC, needed for the evaluation 
of Eq. (5) is a running, real-time process that examines t h r e e  modulation periods of 
input for each point generated when using the software supplied with the TA Instru- 
ments MDSC 2910 or 2920. The output is the appropriately smoothed average, 
computed for the measurement made 1.5 periods earlier. The on-line data record- 
ing lags for this reason 1.5 cycles behind the measurement, and one may have to 
make adjustments when comparing smoothed values and instantaneous data. 

For clarity, seven times are defined in this discussion for the generation of one 
data point: 

t o . . .  t n . . .  1 6  = t o - ( n / 2 ) p  

(note that in MDSC time is counted backwards from the last point considered at t o, 
to the first point needed for computation t6). 
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In the example spread sheet of Table 1 the first column contains a listing of the 
time, t, in steps of two seconds. To save space, only half the spread sheet is printed. 
The present, simple spread sheet covers the time from 0 to 200 s. The period p was 
assumed to be 100 s (frequency 0.01 Hz), so that to=0 s, t1=50 s, t2=100 s, 
t3= 150 s, and t6=300 s. The second column is a listing of the assumed instantane- 
ous heat flow HF(t). In Table 1 it is simply taken to be 1.0+ 1.0xsin(cot-n/4). This 
corresponds to heat capacity difference between sample and reference causing a heat 
flow of 1.00 at the chosen underlying heating rate <q>, and a sinusoidally modu- 
lated temperature that causes a phase angle 5 of ~/4 in the temperature difference, 
and a maximum heat flow amplitude AHF of 1.00. These values are chosen for con- 
venience of computation and do not represent actual data or DSC cell properties. 
Figure 1 shows HF(t) as the phase-shifted sinusoidal curve (heavy curve), clearly 
indicating the maximum modulation amplitude of 1.0 and the additional constant 
heat flow contribution from the underlying heating rate <q> which is also 1.0. 

For analysis the heat flow is conveniently expressed as a Fourier series, as can be 
found in any text on the subject, including the derivation of the recursion formulas: 

HF(t) = b o + ~ a v sin 2~vt + b vcos t 
P 

v= l 

with the constant b o and the maximum amplitudes a~ and b~, given by: 

(6) 

+p/2 

bo = 1 ~ HF(t) dt (7) 

-p/2 

+p/2 

= ~ ~ HF(t) sin dt (8) a v 

-p/2 

+p/2 

1 1 by = ~ I nF(t) cos dt (9) 
-p/2 

where v is a running integer starting from i. 
The deconvolution starts with the evaluation of b o, which is called the total heat 

f low <I-IF(O> in the generally accepted nomenclature of MDSC. The integration in 
Eq. (7) is replaced by the sum in the steps of 2 s of the spread sheet (note that the 
MDSC can evaluate the heat flow every 0.2 s and produces thus in its sum an even 
closer match to the integral): 

t+50 

~ H F ( t )  - 1/2HF(t - 50) - l/2HF(t + 50) 

<HF(t)> = t-50 (10) 
50 
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The total heat flow is> thus, the same as would have been measured without modu- 
lation by standard DSC (as long as the conditions for MDSC and DSC are fulfilled, 
namely, negligible temperature gradient within the sample and steady state). The 
first time at which <HF(t)> can be determined is at t l=50  s. 

For the further description of the heat flow, one realizes that one can conven- 
iently rewrite the Fourier series of Eq. (6) in terms of HF(corr) = H F ( t ) - < H F ( t ) > .  
In this case b ,  is included on the left-hand side of Eq. (6)and the analysis is that of 
what can be called a pseudo-isothermal case. The effect of  the underlying heating 
rate is separated from the further analysis. It will be shown below to what degree 
this separation is valid. The values for HF(corr) are listed in the third column of Ta- 
ble 1 [=  Column 2 - Eq. (10)]. One can furthermore recognize, that for the strictly 
sinusoidal modulation only terms with a 1 and b 1 in the Fourier series need be con- 
sidered. 

Columns four and five of Table 1 are computed next as: 

HFsin(t ) = HF(corr )xs inco t  t >_ 50 s [= AnFsin(cot - 8)sinc0t] 

HFcos(t ) = HF(corr )xcosco t  t >__ 50 s [= AHFsin(cot - 8)COSC0t] 

MDSC 
(<HF> = 1.0, p = 100, delta = 45) 

'V 

" -  1 [ 

" - l.D t 
I:: 

o \ ) , ,  

-1 

, L/i Lyt. 
, I  

(11) 

(12) 

- H F { t |  [ 
- <HF(cos}> ! 

- <HF(sin)> ! 

- HF(cos) ! 

- HF(sin) I 

iiiii Jl L I / 

.2 �84 

50 l a a  I 5 0  ;too 250 300 350 400 

Time (seconds) Fig, I Spread-sheet sinmlation of  ~ ~ C  e~perimcnt 

Z T / ~  AnaL, ,~o. t997 
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They represent the integrands of a x and b l, as expressed in Eqs (8) and (9), respec- 
tively. The middle sinusoidal curve in Fig. 1 represents Eq. (11)and the lower one 
Eq. (12). The terms in brackets give the functional relationship for the two inte- 
grands to the amplitude of the heat flow H F ( t ) ,  as given in the upper sinusoidal 
curve. 

To evaluate a t and b I one can, again, average over the full period, p, instead of 
carrying out the integration, as is shown in columns six and seven of Table 1 and 
indicated in Fig. 1 by the dotted horizontals. The Fourier coefficients can now be 
written in the MDSC nomenclature as al=2<HFsin( t )> and b l=  2<HFcos(t)>: 

t+50 

Z H F s i n ( t )  - 1/2HFsin(t  - 5 0 )  - 1/2HFsin( t  + 5 0 )  

<HFsin(t)> = t-5o (13) 
5O 

[= < (AuF/2)cos~ > ] 

t+50 

~_HFcos(t ) - l l2HFcos(t  - 50) - 1/2HFcos(t + 50) 

<HFcos(t)> = t-50 (14) 
50 

[= < (AHF/2)sin5 > ] 

Because Eq. (10) can be evaluated for the first time only at time t 1 =50 s, Eqs (13) 
and (14) can be evaluated first at t2= 100 s (Table 1). The terms in brackets gives 
the integrals of the corresponding integrands in brackets in Eqs (11) and (12). For 
a phase shift 8 of zero, <HFsin(t)> is 0.5 and <HFcos(t)> is 0 and for the chosen 8 of 
Table 1 of n/2, <HFsin(t)> is +0.3535 and </-/Fcos(t)> is -0.35355, as can be easily 
seen from the bracketed terms in Eqs (13) and (14). Expressing the Fourier series 
in complex notation, Eqs (13) and (14) must be linked to the coefficient c+1 of the 
equivalent series: 

+co 

HF(t )  = ~ c  v e (ziw/p)t 

V = - O o  

(15) 

b v + iav 
c v -  fo rv  < 0 (16) 

2 

b v - iav 
c ~ -  for v > 0 (17) 

2 

c v = b o for v = O  (18) 
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Simple vector addition of the cosine and sine averages of Eqs (13) and (14) gives 
the average maximum amplitude of modulation of the heat flow: 

<AHF > = 2~ < HFsin(t) > 2 + < HFcos(t~'.~"2 (19) 

The maximum amplitude of the heat flow modulation, <AttF >, is listed in column 
eight of Table 1 and is shown as the thin horizontal at 1.00. As expected, the as- 
sumed modulation of the heat-flow amplitude is recovered. The signal is further 
smoothed by computing the additional average given in the last column of Table 1 
and drawn as the heavy line in Fig. 1: 

t+50 

EAHF(t) -- 1/2AHF(t - 50) -- 1/2AHF(t + 50) 

<Aav.(0>smoothed = t-so (20) 
50 

o 

"-  1 e, 
E < 

-1 

-2 
0 50 100 150 200 250 300 350 400 

Time (seconds) 

Fig. 2 Similar analysis as in Fig. 1, but with a heat-flow spike at 200 s. Note that for clarity 
the smoothed <AHF> has been moved upwards by one unit. The HFsi n is the middle 
sinusoidal curve 
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This further averaging postpones the first point calculated on-line after measuring 
to t3=150 s. 

Once set-up, this spread sheet can now easily be modified by changing column 
two to simulate other, more complicated experimental conditions. Changing col- 
umn 1 can extend the range analyzed. For our discussion of the kinetics of the glass 
transition [8] up to 2500 steps have been included, to easily cover the whole transi- 
tion region. The spread sheet, as just described, is available via WWW [9] as file 
MDSCDAT.WK4 that also includes Fig. 1. The authors are also glad to copy the 
file to your empty, IBM-compatibly formatted diskette. 

D i scus s ion  

The detailed link of the analysis given by the MDSC software to the Fourier se- 
ries of Eq. (6) shows the much greater simplicity of a sinusoidal modulation over 
any other function. All higher harmonics (v>l) can be neglected. These higher har- 
monics would correspond to a higher instantaneous heating rate q(O = dTs/dt, and a 

'IT1 i , MDSC ! (50'~ jump in heat flow at t = 300 s) [ 

AAA 

 IA/I- I VIII/1 

-2 
0 100 200 300 400 500 600 700 

Time (seconds) 

. HF( t )  

- ' r  

- < :HF(s ln )>  

- H F ( c o = )  

H F ( l l n )  

800 

Fig. 3 Similai" analysis as in Fig. 1, but with a spike in heat flow at 300 s. Note that for clar- 
ity the smoothed <AHF> has been moved upwards by one unit. The HFsi n is the middle 
sinusoidal curve 
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loss of steady state would be more likely in case one wants to make a full evaluation 
of the Fourier series. For well chosen modulation functions, it may perhaps be pos- 
sible to compute the required amplitudes for Eq. (4) from the first Fourier coeffi- 
cients. 

The question to be answered in this discussion is how typical instrument and 
sample effects register through the software. The first example is shown in Fig. 2. 
It involves the introduction of a sharp spike of a 50 % increase in heat flow (col- 
umn 1 of Table 1, amplitudes of 1.1, 1.3, 1.5, 1.3 and 1.1, instead of 1.0 at 196, 
198, 200, 202 and 204 s, respectively). This is a major effect in a DSC trace. A 
smaller spike of this nature could represent an error caused by mechanical move- 
ment of the sample or reference, a break in the gas flow, or other similar systematic 
errors. A larger spike of this nature may signal a transition with a latent heat. 

Inspection of Fig. 2 shows that the spike is smoothed over the full three cycles 
involved in the various averages and given an overall negative heat-flow contribu- 
tion despite of its positive value. Inspecting the spread sheet and experimentation 

10 - , r a m  m F ~  

MDSC 
9 (O.01t drift in heat flow starting at 250 s) 

8 

5 -@ 

- -  4 

E 
< 3 

7 v, 

6 A 

2 A ,, 
' ' A ' 

IV \ V t  VL V/  
-1 

- HF(t)  

- <HF(co:)> 

- <HF(s ln )>  

- HF(cos) 

HF(sln) 

�9 smoo thed  <A(HF)> 

- <A(HF)> 

- 2  i im 

0 100 200 300 400 500 600 700 800 

Time (seconds) 
Fig, 4 Similar analysis as in Fig. l, but with a strong heat-flow drift starting at 250 s. Note 

that for clarity the smoothed <AHF> has been moved upwards by one unit. The HFsi n 
is the middle sinusoidal curve 
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with position and size of spikes reveals that: 1. The total heat flow <HF(t)> gives, 
naturally, always the proper sum. 2. Spikes during the negative portion of the 
modulation cycle give a negative contribution, and spikes during the positive por- 
tion, give a positive contribution. 3. The quantitative contribution to <AH~t)> var- 
ies. It is twice the actual amount at the maxima and minima of HF(t) and goes 
through zero at the points of inflection. The contributions to <HFsin(t)> and 
<HFeos(t)> vary with the phase angle 8. 

Figure 3 shows the effect of a 50% jump in heat flow that continues to the end 
of the experiment. The full effect of this large change in heat flow is visible in the 
total heat flow <HF(t)>, while the reversing heat flow shows, as expected, no effect 
beyond the +1.5 p modulation period. Within this narrow time period, however, 
positive or negative contributions may occur, depending on the phase of the heat 
flow when the change occurs. In both, the spike and abrupt change in heat flow, 
high-frequency harmonics would show in a Fourier series that describes the actual 
heat flow. By omitting all higher terms in the MDSC analysis, their contributions 

0a "o 
-I 

"-" 1 

E < 

-1 

-2 

0 100 200 300 400 500 600 700 800 

Time (seconds) 
Fig, 5 Similar analysis as in Fig. 4, but with an alternating heat-flow drift throughout the 

simulation. Note that for clarity the smoothed <Any> has been moved upwards by one 
unit. The HFsi n is the middle sinusoidal curve 
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10 

MDSC 
9 (exponential drift of the heat flow) I 

I 8 

10 

E 
< 

A 

, A 

o Al\ r 

-I 

-2 
0 100 200 300 400 500 600 700 

Time (seconds) 

- H F ( t )  

- < H F ( c o s ] >  

- < H l : ( s l n ~  

- ~(e,o,) 

- H F ( s l n )  

�9 smoothed <A[HFp 

- < A ( H F ) >  

800 

Fig. 6 Similar analysis as in Fig. 4, but with an exponentially increasing heat-flow drift 
throughout the simulation. Note that for clarity the smoothed <AHF> has been moved 
upwards by one unit. the HFsi n is the middle sinusoidal curve 

are not accounted for. The simplified averaging in Eq. (10) keeps all Fourier com- 
ponents that average to zero over one cycle, p, as part of the reversing heat flow, 
causing the small errors for any abrupt change. If changes of this nature are present 
or expected, a simulation of the results with the present method may help in assess- 
ing the (small) error. 

Figure 4 is the simulation of a continuously increasing heat flow, starting at 
300 s. Such behavior may be seen if a sample experience either a continuously in- 
creasing loss of mass by evaporation, or an accelerating chemical reaction. As has 
been illustrated frequently, measurement of the reversing heat flow, and thus heat 
capacity, is feasible under such circumstances. The large amount of nonmodulated 
heat effect is effectively separated. Again, however, a small effect at the sharp onset 
is visible, stretching over the three averaged modulation cycles. Its value is, as be- 
fore, dependent on the phase of the modulation and sharpness of the onset of the 
effect. Simulating the same drift as in Fig. 4 with reversing direction every 100 s, 

J. Thermal Anal., 48, 1997 



WUNDERL1CH: MODULATED DSC 223 

O 
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,,e 
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- 4 0  
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Integrated Fictive T = 340.34 K, N = 3.7105 mol i 
.......... from 320,4 to 362.1 K: H(tot) = 1629.5 J/mol, H(irr) = 912.6, J~mol, H(rev) == 916.8 J/mol I 

Fig. 7 Use of the spread-sheet analysis to analyze the time effects at the glass transition of 
poly(ethylene terephthalate) PET. For details see Refs [7, 8] 

gives the results in Fig. 5. The added heat effect reaches 100% at each reversal, 
while the error in modulation amplitude in the smoothed <AI~ ~ is only about • %. 

As a final example the same additional heat flow as in Fig. 4 is introduced more 
gradually, using an exponential increase that also reaches 5.5 at 800 s. Figure 6 
gives the result. In this case that may be closer to reality, the effect on the smoothed 
<Ant.> is truly insignificant. Figures (3) to (6) show also the importance of and rea- 
sons behind the commonly proclaimed rule that several modulations must span a 
transition to be studied by MDSC. 

Once the erroneous effects and lags due to thermal conductivity have been elimi- 
nated by proper choice of modulation, mass, and underlying rates, it is also possi- 
ble to study actual kinetic effects in the sample, as is shown in more detail in the 
discussion of the glass transition [7, 8]. Figure 7 shows such an analysis of the heat 
capacity in the glass transition region making use of a similar spread sheet as in Ta- 
ble 1 for poly(ethylene terephthalate) with parameters derived from quasi-isother- 
mal MDSC. The (negligible) influence of higher harmonics and the separation of 
reversing effects from nonreversing is possible. 
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Conclusions 

A simple spread-sheet method is introduced for the simulation of MDSC meas- 
urements. It shows the limits of the chosen analysis methods and is a good learning 
tool to fine-tune ones experimental technique. Furthermore, it aids greatly in the 
,separation of heat-flow and kinetic effects due to sluggish response of the sample 
itself. 
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